
C H A P T E R 1 3

XML and the .NET
Framework

The .NET (pronounced “dot net”) Framework is the foundation of Microsoft’s
next generation of development tools. Given the increasing importance of
XML in all areas of programming and data processing, the inclusion of power-
ful, integrated XML support in .NET is not surprising. This chapter provides a
brief overview of .NET and then details the XML tools that are provided by
the Framework and the Visual Studio .NET development environment. Code
samples in this chapter are written in the C# language. This is a new language
introduced with Visual Studio .NET.

.NET Overview

Microsoft’s .NET initiative has its origins in the increasing importance of the
Web in almost all areas of application development. Previous development
tools, exemplified by Visual Studio version 6.0, were designed for the needs
of a decade ago, when the ruling paradigm was applications that were stand-
alone or were distributed over a local area network (LAN). As the need for
Web-related capabilities grew, ad hoc solutions were crafted as enhancements
to existing tools. Because the Web capabilities were not built into the develop-
ment tools from the beginning, however, there were inevitable problems with
deployment, maintenance, and efficiency.

Things are different with .NET. The .NET Framework provides a com-
prehensive set of classes that are designed for just about any programming
task you can imagine. From the very beginning, the Framework was designed
to integrate Web-related programming functionality. The Framework can be
used by any of Microsoft’s three programming languages: Visual Basic, C++,
and C# (pronounced “C sharp”). The new releases of Visual Basic and C++
will be familiar to anyone who has used earlier versions, although there are

291

numerous changes to accommodate the .NET architecture. C# is new
language that is similar to Java in many respects, although there are signifi-
cant differences between the two. Some observers consider C# to be a Java
replacement made necessary because legal problems have forced Microsoft to
stop supporting Java (or Visual J++, as Microsoft’s version of Java was called).

For the XML developer, .NET was designed to support XML from the
ground up. There are no add-ons required, such as the MSXML Parser or the
SOAP Toolkit. Everything you need is provided by the Framework. Please
remember that as of this writing, the .NET Framework is a beta product. It is
believed that the XML support is fairly stable, but it is possible that there will
be some changes before the final product is released (which may happen by
the time you read this).

The System.XML Assembly

XML support in .NET is provided by the classes in the System.XML name-
space, or assembly. An assembly is a collection of related classes. In the case of
System.XML, the classes are related by having to do with XML processing.
The primary classes are as follows:

■ XmlTextReader: Provides forward-only, fast, noncached access to XML
data

■ XmlValidatingReader: Used in conjunction with the XmlTextReader class
to provide the capability for DTD, XDR, and XSD schema validation

■ XmlDocument: Implements both level 1 and level 2 of the W3C Docu-
ment Object Model specification (http://www.w3.org/TR/DOM-Level-1/
and http://www.w3.org/TR/DOM-Level-2/)

■ XmlTextWriter: Permits generation of XML documents that conform to
the W3C XML 1.0 specification

■ XmlNavigator: Supports evaluation of XPath expressions

Note that the Simple API for XML (SAX) is not supported in .NET. Simi-
lar functionality is provided by the XmlTextReader class, although there are sig-
nificant differences, which are detailed later in the chapter.

The XmlTextReader Class

The XmlTextReader class is designed for fast, resource nonintensive access to
the contents of an XML file. Unlike the XmlDocument class, the XMLTextReader
class does not create a node tree of the entire document in memory. Rather, it

292 Chapter 13 XML and the .NET Framework

processes the XML as a forward-only stream. The entire XML document is
never available at the same time (as is the case with the XmlDocument class)—
your code can extract individual items from the XML file as they stream by.

In some ways the XmlTextReader class is similar to the SAX model covered
in Chapter 11, and in fact, the .NET programmer would tend to use the Xml-
TextReader class for the same types of processing that SAX would be used for.
There is a major difference between the two models, however. SAX uses a push
model in which the XML processor uses events to inform the host program that
node data is available, and the program can use the data or not as its needs dic-
tate. The data is pushed from the XML processor to the host, and it can be ac-
cepted or ignored. As an analogy, think of a Chinese dim sum restaurant where
the available food is brought around on carts and you select what you want.

In contrast, the XmlTextReader class uses a pull model. The host program
requests that the XML processor read a node, and then requests data from
that node as needed. The host program pulls the data from the processor as it
is needed. Pull processing is analogous to a traditional restaurant where you
request items from a menu. A pull model has numerous advantages over a
push model for XML processing. Perhaps most important is that a push model
can easily be built on top of a pull model, while the reverse is not true.

The XmlTextReader class operates by stepping through the nodes of an XML
document, one at a time, under the control of the host program. At any given
time, there is a current node. For the current node, the host program can deter-
mine the type of the node, its attributes (if any), its data, and so on. Once the
needed information about the current node has been obtained, the program will
step to the next node. In this manner the entire XML file can be processed.

The XmlTextReader class has a large number of public properties and
methods. The ones you will need most often are explained in Table 13.1 and
Table 13.2.

The XmlTextReader Class 293

Property Description

AttributeCount Returns the number of attributes of the current node

Depth Returns the depth (nesting level) of the current node

EOF Returns True if the XML reader is at the end of the
file

Table 13.1 Commonly Needed Properties of the XmlTextReader Class

(continued)

294 Chapter 13 XML and the .NET Framework

Property Description

HasAttributes Returns True if the current node has attributes

HasValue Returns True if the current node can have a value

IsEmptyElement Returns True if the current node is an empty element
(for example, <ElementName/>)

Item Returns the value of an attribute

LocalName Returns the name of the current node without any
namespace prefix

Name Returns the name of the current node with any name-
space prefix

NodeType Returns the type of the current node as an XmlNode-
Type (see Table 13.3)

Value Returns the value of the current node

Table 13.1 (cont.)

Method Description

Close() Closes the XML file and reinitializes the reader.

GetAttribute(att) Gets the value of an attribute. Att is a number specify-
ing the position of the attribute, with the first attribute
being 0, or a string specifying the name of the
attribute.

IsStartElement() Returns True if the current node is a start element or
an empty element.

MoveToAttribute(att) Moves to a specific attribute. Att is a number specifying
the position of the attribute, with the first attribute
being 0, or a string specifying the name of the attribute.

Table 13.2 Commonly Needed Methods of the XmlTextReader Class

The XmlTextReader Class 295

Method Description

MoveToElement() Moves to the element that contains the current
attribute.

MoveToFirstAttribute() Moves to the first attribute.

MoveToNextAttribute() Moves to the next attribute.

Read() Reads the next node from the XML file. Returns True
on success or False if there are no more nodes to read.

Table 13.2 (cont.)

Value Meaning

Attribute An attribute

CDATA A CDATA section

Comment A comment

Document The document node (root element)

DocumentType A DOCTYPE element

Element An element (opening tag)

EndElement The end of an element (closing tag)

EntityReference An entity reference

ProcessingInstruction An XML processing instruction

Text The text content of an element

XmlDeclaration The XML declaration element

Table 13.3 XmlNodeType Values Returned by the NodeType Property

The basic steps required to use the XmlTextReader class are as follows:

1. Create an instance of the class, passing the name of the XML file to
process as an argument to the class constructor.

2. Create a loop that executes the Read() method repeatedly until it
returns False, which means that the end of the file has been reached.

3. In the loop, determine the type of the current node.
4. Based on the node type, either ignore the node or retrieve node data as

needed.

Listing 13.1 presents an example of using the XmlTextReader class. It is an
ASP Web page, with the script components written using the C# language.
The script opens an XML file and processes it using the XmlTextReader class.
The root element in the file, its child element, and their attributes and data
are formatted as HTML and written to the output for display in the browser.

The script defines a class called DisplayXmlFile that does all of the work.
This class contains one public method, ReadDoc(), that is passed the name of
the XML file to be processed and returns the HTML to be displayed in the
document. It also contains two private methods: ProcessXml(), which performs
the actual processing of the XML file, and Spaces(), which is a utility function
to provide indentation to format the output.

The script also contains a procedure named Page_Load(). This is an event
procedure that is called automatically when the browser first loads the page.
Code in this procedure creates an instance of the DisplayXml class, and then
calls its ReadDoc() method, passing the name of the XML file to be processed.
The HTML returned by this method is displayed by assigning it to the Inner-
HTML property of a <div> element in the page.

Figure 13.1 shows the output when this script is used to process List-
ing1506.xml, an XML file that is presented in Chapter 15. Though not visible
in the figure, the data (attribute and element values) are displayed in blue
while the remainder of the document is in black.

Listing 13.1 Using the XmlTextReader Class to Read Data
from an XML File

<%@ Import Namespace="System.Xml" %>

<script language="C#" runat=server>

public class DisplayXmlFile

// This is the class that reads and processes the XML file.

296 Chapter 13 XML and the .NET Framework

{

StringBuilder result = new StringBuilder();

public string ReadDoc(String XmlFileName) {

XmlTextReader xmlReader = null;

try {

// Create an instance of the XMLTextReader.

xmlReader = new XmlTextReader(XmlFileName);

// Process the XML file.

ProcessXml(xmlReader);

}

catch (Exception e){

result.Append(“The following error occurred: " +

e.ToString());

}

finally

{

if (xmlReader != null)

xmlReader.Close();

}

return result.ToString();

}

private void ProcessXml(XmlTextReader xmlReader) {

// This method reads the XML file and generates the output HTML.

while (xmlReader.Read()) {

// Process a start of element node.

if (xmlReader.NodeType == XmlNodeType.Element) {

result.Append(spaces(xmlReader.Depth*3));

result.Append("<" + xmlReader.Name);

if (xmlReader.AttributeCount > 0) {

while (xmlReader.MoveToNextAttribute()) {

result.Append(" " + xmlReader.LocalName +

"=" + xmlReader.Value +

" ");

}

}

result.Append(">
");

// Process an end of element node.

} else if (xmlReader.NodeType == XmlNodeType.EndElement) {

result.Append(spaces(xmlReader.Depth*3));

result.Append("</" + xmlReader.Name + ">
");

// Process a text node.

} else if (xmlReader.NodeType == XmlNodeType.Text) {

The XmlTextReader Class 297

if (xmlReader.Value.Length != 0) {

result.Append(spaces(xmlReader.Depth*3));

result.Append("" + xmlReader.Value +

"
");

}

}

}

}

private string spaces(int n) {

// Returns the specified number of non-breaking

// spaces ().

string s = "";

for (int i=0; i < n; i++) {

s += " ";

}

return s;

}

} //End DisplayXmlFile Class

private void Page_Load(Object sender, EventArgs e){

// Create a class instance.

DisplayXmlFile DisplayXmlFileDemo = new DisplayXmlFile();

// Add the HTML generated by the class to the HTML document.

show.InnerHtml =

DisplayXmlFileDemo.ReadDoc(Server.MapPath("list1506.xml"));

}

</script>

<html>

<head>

</head>

<body>

Using the XmlTextReader Class<p>

<div id="show" runat="server"/>

</body>

</html>

298 Chapter 13 XML and the .NET Framework

The XmlValidatingReader Class

The XmlValidatingReader class is used to validate an XML file against a DTD
or a schema (either XDR or XSD). This class is used in conjunction with the
XmlTextReader class and provides the same access to the document contents.

The XmlValidatingReader Class 299

Figure 13.1 An XML file displayed in Internet Explorer by the script in Listing 13.1

The properties and methods of these two classes are essentially identical. The
differences between them lie in two properties of the XmlValidatingReader
class that are related to validation.

The ValidationType property specifies the type of validation to be per-
formed. The possible settings for this property are the ValidationType con-
stants described in Table 13.4.

The ValidationEventHandler property is used to inform the XML reader of
the event procedure you have created to handle validation errors. This event
procedure takes the following form:

public void ValidationCallBack(object sender, ValidationEventArgs args)

// Code to handle error goes here.

}

The name of the procedure can be anything you like. When a validation
error occurs, the procedure is called by the XML reader with information
about the error contained in the args argument. Use args.ErrorCode and
args.Message to obtain a numerical code and text description of the error,
respectively. You can also use the LineNumber and LinePosition properties of
the XMLTextReader class to get information about the location of the error in
the XML file.

To inform the XmlValidatingReader object of your event handler, use the
following syntax (assuming that “vrdr” is an instance of the class):

300 Chapter 13 XML and the .NET Framework

Constant Description

Auto Validates using information contained in the XML
document (a DTD defined in a DOCTYPE element, a
“schemalocation” attribute, or an inline schema). If no
validation information is found, it acts as a nonvalidat-
ing parser.

DTD Validate against a DTD.

None Does not validate.

Schema Validate against an XSD Schema.

XDR Validate against an XDR Schema.

Table 13.4 ValidationType Constants for the ValidationType Property

vrdr.ValidationEventHandler +=

new ValidationEventHandler(NameOfEventHandler);

Note that you do not have to specify a handler for validation errors. If you
do not, the reader will throw an exception when a validation error occurs. The
advantage of using a validation error handler is that multiple validation errors
can be detected and reported during a single pass over the XML file.

The general procedure for using the XmlValidatingReader class to validate
an XML document is as follows. This assumes that the XML file contains the
DTD/schema to be used for validation, either inline or as a reference.

1. Create an instance of the XmlTextReader class and load the XML file
into it.

2. Create an instance of the XmlValidatingReader class and pass it a refer-
ence to the XmlTextReader class created in step 1.

3. Create an event handler procedure to handle validation errors. Code in
this procedure can display messages to the user, set flags, or perform
other actions as required by the program.

4. Set the XmlValidatingReader object’s ValidationType and Validation-
EventHandler properties.

5. Call the XmlValidatingReader object’s Read() method repeatedly until
the end of the XML file is reached.

The program in Listing 13.2 shows an example of how to do these tasks.
This is a console, or command-line, application written in C# (a console appli-
cation runs in a “DOS box”). Passed the name of an XML file as a command-
line argument, the program validates the file against the DTD or schema
information contained or referenced in the file. If the validation is successful,
a message to that effect is displayed. If there is a validation error, or an excep-
tion is thrown, the relevant information is displayed to the user.

Listing 13.2 C# Program to Demonstrate the XmlValidatingReader Class

using System;

using System.IO;

using System.Xml;

using System.Xml.Schema;

public class ValidateXML

{

The XmlValidatingReader Class 301

private XmlTextReader rdr = null;

private XmlValidatingReader vrdr = null;

private Boolean succeeded = true;

public ValidateXML(string filename)

// This method performs the validation.

{

try

{

//Create an XmlTextReader.

rdr = new XmlTextReader(filename);

// Create an XmlValidatingReader.

vrdr = new XmlValidatingReader(rdr);

// Set validation type to DTD.

vrdr.ValidationType=ValidationType.DTD;

// Set the validation callback method.

vrdr.ValidationEventHandler +=

new ValidationEventHandler(ValidationCallBack);

// Read the XML document.

while (vrdr.Read()) {}

// Display success or failure message.

if (succeeded)

Console.WriteLine("Validation succeeded.");

else

Console.WriteLine("Validation failed.");

}

catch (Exception e)

{

Console.WriteLine("Xml Exception: " + e.ToString());

}

finally

{

if (rdr != null)

rdr.Close();

if (vrdr != null)

vrdr.Close();

}

}

public static void Main(string[] args)

{

// Execution starts here.

// The class reference.

ValidateXML validate;

// Ensure that 1 command line argument (the XML file name) was passed.

302 Chapter 13 XML and the .NET Framework

if (args.Length != 1)

Console.WriteLine("Usage: validate xmlfilename");

else

validate = new ValidateXML(args[0]);

}

public void ValidationCallBack(object sender, ValidationEventArgs args

)

{

// This callback method is called when a validation error occurs.

succeeded = false;

// Display error information to the user.

Console.Write("\r\n\tValidation error: " + args.Message);

if (rdr.LineNumber > 0)

Console.WriteLine("Line: " + rdr.LineNumber + " Position: " +

rdr.LinePosition);

}

}

The XmlTextWriter Class

The XmlTextWriter class provides the ability to write properly formed XML to
a file or other stream. The XML created conforms to the W3C XML specifica-
tion version 1.0, and also to the Namespaces in XML specification. Using this
class is straightforward:

1. Create an instance of the class, passing the name of the file to be used
for output and the type of encoding to use. Pass a null reference for the
encoding argument to use UTF-8 encoding.

2. Set object properties as needed to control the formatting of the output.
3. Call object methods to write elements and attributes to the file.
4. Close the file.

The properties and methods of the XmlTextWriter class that you will use
most often are described in Table 13.5 and Table 13.6.

The program in Listing 13.3 demonstrates how to use the XmlTextWriter
class. This is a C# console application that creates a new XML file named
XmlOutput.xml. Some data is written to the file, and then it is closed. Finally,
the file is read back using the XmlTextReader class and then written to the con-
sole. Reading the file with XmlTextReader is often a good idea to verify that
the file is well-formed. The results of running the program are shown in
Figure 13.2.

The XmlTextWriter Class 303

304 Chapter 13 XML and the .NET Framework

Property Description

Formatting Specifies the formatting of the output. Possible settings are
Formatting.Indented to indent child elements with respect
to their parents. Set to Formatting.None for no indentation
(the default).

Indentation Specifies how many characters to indent by for each level in
the element hierarchy when Formatting is set to indented.
The default is 2.

IndentChar Specifies the character to use for indenting when Format-
ting is set to indented. The default is the space character.
Must be a valid white space character.

Namespaces Set to True to enable namespace support, and set to False
for no namespace support. The default is True.

QuoteChar Specifies the character to use for quoting attribute values.
Must be either the double quote (") or the single quote
($). The default is the double quote.

Table 13.5 Commonly Needed Properties of the XmlTextWriter Class

Method Description

Close() Closes the output stream or file.

Flush() Flushes the writer buffer to the output file or stream.

WriteAttributeString Writes an attribute with the specified local name
(localName, value) and value. Use the other forms of the method to include

as namespace URI and a prefix.
WriteAttributeString

(localName, ns, value)

WriteAttributeString

(prefix, localName, ns, value)

WriteCData(text) Writes a CDATA section containing text.

WriteComment(text) Writes an XML comment containing text.

Table 13.6 Commonly Needed Methods of the XmlTextWriter Class

(continued)

The XmlTextWriter Class 305

Method Description

WriteDocType(name, pubid, Writes a DOCTYPE element. Name is a required argument
sysid, subset) specifying the name of the DOCTYPE. The other argu-

ments are optional and are for writing PUBLIC “pubid,”
SYSTEM “sysid,” and [subset] to the DOCTYPE element.

WriteElementString Writes an element with the specified local name and
(localName, value) value. Use the second form of the method to include a

namespace URI.
WriteElementString

(localName, ns, value)

WriteEndAttribute() Completes an attribute started with WriteStart-
Attribute().

WriteEndDocument() Closes any open elements or attributes.

WriteEndElement() Writes the closing tag for an element started with
WriteStartElement(). If the element is empty it will be
closed with a short end tag: <element />.

WriteFullEndElement() Writes the closing tag for an element started with
WriteStartElement(). If the element is empty it will be
closed with a separate end tag: <element></element>.

WriteProcessingInstruction Writes a processing instruction with the specified name
(name, text) and text.

WriteRaw(text) Writes raw text to the output.

WriteStartAttribute Writes the start of an attribute with the specified local
(localName, ns) name and namespace URI. Use the second form of the

method to add a prefix to the local name.
WriteStartAttribute

(prefix, localName, ns)

WriteStartDocument() Writes the XML declaration with the version “1.0.” Use
the second form of the method to include “standalone=yes”
or “standalone=no” in the declaration.

WriteStartDocument

(standalone)

Table 13.6 (cont.)

(continued)

Listing 13.3 Console Application Demonstrating the XmlTextWriter
Class

using System;

using System.IO;

using System.Xml;

class XmlWriter

{

private const string m_FileName = "XmlOutput.xml";

static void Main()

{

XmlTextWriter w = null;

XmlTextReader rdr = null;

try

{

w = new XmlTextWriter(m_FileName, null);

w.Formatting = Formatting.Indented;

w.Indentation = 4;

//Start the document.

w.WriteStartDocument();

//Write the root element.

w.WriteStartElement("contacts");

306 Chapter 13 XML and the .NET Framework

Method Description

WriteStartElement(localName) Writes a start element with the specified local name. Use
the other forms of the method to include a namespace

WriteStartElement URI and a prefix in the element.
(localName, ns)
WriteStartElement

(prefix, localName, ns)

WriteWhitespace(string) Writes white space to the output. If string contains
non–white space characters, an exception occurs.

Table 13.6 (cont.)

// Start a "person" element.

w.WriteStartElement("person");

//Write a "category" attribute.

w.WriteAttributeString("category", "personal");

//Write a "name" element.

w.WriteElementString("name", "John Adams");

//Write a "phone" element.

w.WriteElementString("phone", "555-555-1212");

//Write an "email" element.

w.WriteElementString("email", "john.adams@nowhere.net");

//Close the "person" element.

w.WriteEndElement();

//Write another "person" element.

w.WriteStartElement("person");

w.WriteAttributeString("category", "business");

w.WriteElementString("name", "Mandy Pearson");

w.WriteElementString("phone", "555-444-3232");

w.WriteElementString("email", "mandyp@overthere.org");

w.WriteEndElement();

// Close the root element.

w.WriteEndElement();

//Flush and close.

w.Flush();

w.Close();

//Read the file back in and display it.

rdr = new XmlTextReader(m_FileName);

XmlDocument xmlDoc = new XmlDocument();

// Preserve white space for readability

xmlDoc.PreserveWhitespace = true;

xmlDoc.Load(rdr);

// Write the content to the console

Console.Write(xmlDoc.InnerXml);

}

catch (Exception e)

{

The XmlTextWriter Class 307

Console.WriteLine("Exception: ", e.ToString());

}

finally

{

Console.WriteLine();

Console.WriteLine("Processing completed.");

if (rdr != null)

rdr.Close();

if (w != null)

w.Close();

}

}

}

308 Chapter 13 XML and the .NET Framework

Figure 13.2 Running the C# console application in Listing 13.3

The XmlDocument Class

The XmlDocument class provides support for the Document Object Model
(DOM) levels 1 and 2, as defined by W3C. This class represents the entire
XML document as an in-memory node tree, and it permits both navigation
and editing of the document. The DOM implemented by the XmlDocument
class is essentially identical to the DOM implemented by the MSXML Parser,
as was covered in detail in Chapter 10. The properties and methods are the
same, and rather than duplicating that information here I suggest that you
turn to that chapter.

When do you use the XmlDocument class in preference to the XmlTextReader
class? The criteria are similar to those for deciding between using the
MSXML DOM and the Simple API for XML.

Use XmlTextReader when

■ Memory and processing resources are a consideration, particularly for
large documents.

■ You are looking for specific pieces of information in the document. For
example, in a library catalog, use XmlTextReader when you need to
locate all works by a specific author.

■ You do not need to modify the document structure.
■ You want to only partially parse the document before handing it off to

another application.

Use XmlDocument when

■ You need random access to all of document’s contents.
■ You need to modify the document structure.
■ You need complex XPath filtering.
■ You need to perform XSLT transformations.

There are various ways to use the XmlDocument class. You can use it alone,
applying the class methods and properties to “walk the tree” and make
changes. You can also use the XmlDocument class in conjunction with the XPath-
Navigator class, which provides more sophisticated navigational and editing
capabilities as well as XPath support. The following sections look at both. The
first section presents a C# demonstration of using the XmlDocument class to
modify the contents of an XML file. The second section explains how to use
the XPathNavigator class.

The XmlDocument Class 309

Using the XmlDocument Class to Modify an XML Document

The first demonstration of the XmlDocument class shows how to use it to modify
the contents of an XML document. In this case the task is to add a new <per-
son> element to the XML file shown in Listing 13.4 and save the modified file
under the name OutputFile.xml. The program, shown in Listing 13.5, is a C#
console application, and the code is fully commented so you can figure out
how it works.

Listing 13.4 InputFile.xml Is the File to Be Modified

<?xml version="1.0"?>

<contacts>

<person category="personal">

<name>John Adams</name>

<phone>555-555-1212</phone>

<email>john.adams@nowhere.net</email>

</person>

<person category="business">

<name>Mandy Pearson</name>

<phone>555-444-3232</phone>

<email>mandyp@overthere.org</email>

</person>

<person category="family">

<name>Jack Sprat</name>

<phone>000-111-2222</phone>

<email>jack001@earth.net</email>

</person>

</contacts>

Listing 13.5 C# Program to Modify the Contents of InputFile.xml

using System;

using System.IO;

using System.Xml;

class Class1

{

private const string m_InFileName = "InputFile.xml";

private const string m_OutFileName = "OutputFile.xml";

static void Main()

{

310 Chapter 13 XML and the .NET Framework

bool ok = true;

XmlDocument xmlDoc = new XmlDocument();

try

{`

//Load the input file.

xmlDoc.Load(m_InFileName);

//Create a new "person" element.

XmlElement elPerson = xmlDoc.CreateElement("person");

//Add the "category" attribute.

elPerson.SetAttribute("category", "family");

//Create "name," "phone," and "email" elements.

XmlElement elName = xmlDoc.CreateElement("name",

"Ann Winslow");

XmlElement elPhone = xmlDoc.CreateElement("phone",

"000-000-0000");

XmlElement elEmail = xmlDoc.CreateElement("email",

"anne123@there.net");

//Add them as children of the "person" element.

elPerson.AppendChild(elName);

elPerson.AppendChild(elPhone);

elPerson.AppendChild(elEmail);

//Get a reference to the document's root element.

XmlElement elRoot = xmlDoc.DocumentElement;

//Add the "person" element as a child of the root.

elRoot.AppendChild(elPerson);

//Save the document.

xmlDoc.Save(m_OutFileName);

}

catch (Exception e)

{

ok = false;

Console.WriteLine("Exception: " + e.Message);

}

finally

{

if (ok)

Console.WriteLine("Element added successfully.");

else

Console.WriteLine("An error occurred.");

}

}

}

The XmlDocument Class 311

Using XPathNavigator with XmlDocument

The XPathNavigator class is designed specifically to facilitate navigating
through XML that is contained in an XmlDocument object. It provides a cursor
model, meaning that the navigator almost always has a position within the doc-
ument’s node tree. Many of the actions you can take with the navigator are
performed relative to the current position, such as “move to the next node.”
When an action is performed successfully, the cursor is left pointing at the
location where the action occurred. When an action fails, the cursor remains
at its original position. You can always use the MoveToRoot() method to move
the cursor to the document’s root node.

Much of the power of the XPathNavigator class comes from its support for
XPath expressions. You can select all of the nodes that match an XPath expres-
sion, and then conveniently work with them. However, many of the uses of
this class do not in fact involve XPath expressions and hence its name is a bit
misleading. These are the steps required to work with the XPathNavigator class
if you are not going to use XPath expressions:

1. Create an instance of the XmlDocument class.
2. Load the XML document into the XmlDocument object.
3. Call the XmlDocument object’s CreateNavigator() method to create an

instance of the XPathNavigator class and return a reference to it.
4. Use the XPathNavigator object’s properties and methods to move

around the document and access its content.

The following code fragment shows how the preceding steps would be
done in C#:

XmlDocument xmlDoc = new XmlDocument;

xmlDoc.Load("original.xml");

XPathNavigator nav = xmlDoc.CreateNavigator();

// Work with navigator here.

If you want to use XPath expressions, you call the XPathNavigator object’s
Select() method, which returns a type XPathNodeIterator that contains the
nodes matching the XPath expression. This is explained later in this chapter.

When the XPathNavigator is first created, it is by default positioned on the
document’s root node. Even so, many programmers call the MoveToRoot()
method to ensure that they know where they are starting. Then a call to
MoveToFirstChild() moves to the first element in the file, typically the <?xml
version="1.0"?> node. At this point, a typical approach is to call MoveToNext()

312 Chapter 13 XML and the .NET Framework

repeatedly until you reach the document’s root element (the <contacts> ele-
ment in Listing 13.4). Then you can use the various methods to move around
the document as needed. You’ll see this in the first demonstration program
later in this chapter.

Note that there is some potential confusion regarding the use of the term
“root” because the root node as seen by XPathNavigator is not the same as the
document’s root element. The root node encompasses the entire XML docu-
ment, and the root element is a child node of this root node.

The XPathNavigator class has a large number of properties and methods,
and many of them are infrequently needed. Rather then presenting all of
them here, I have limited coverage to those properties and methods that you
most often need. (You can refer to the .NET online documentation for infor-
mation on the others.) Table 13.7 lists these properties and methods of the
XPathNavigator class. Following the tables, I present two sample programs that
use the XPathNavigator class.

Demonstrating XPathNavigator

This first demonstration shows how to use the XPathNavigator class to “walk”
the tree of an XML document. The demonstration makes use of the XML data

The XmlDocument Class 313

Property/Method Description

GetAttribute (name, ns) Returns the value of the attribute with the specified
name and namespace URI. Returns null if a matching
attribute is not found.

HasAttributes Returns True if the current node has attributes. Returns
False if the current node has no attributes or is not an
element node.

HasChildren Returns True if the current node has child nodes.

IsEmptyElement Returns True if the current node is an empty element
(such as <element/>).

LocalName Gets the name of the current node without its namespace
prefix.

Table 13.7 Commonly Used Properties and Methods of the XPathNavigator Class

(continued)

314 Chapter 13 XML and the .NET Framework

Property/Method Description

Matches (XPathExpr) Returns True if the current node matches the specified
XPath expression. The argument can be a string or a type
XPathExpression.

MoveTo() Moves to the first sibling of the current node. Returns
True if there is a first sibling node or False if not or if the
current node is an attribute node.

MoveToAttribute (name, ns) Moves to the attribute with the matching local name and
namespace URI. Returns True if a matching attribute is
found or False if not.

MoveToFirstChild() Moves to the first child of the current node. Returns
True on success or False if there is no child node.

MoveToID(id) Moves to the node that has a type ID attribute with the
specified value. Returns True on success or False if there
is no matching node.

MoveToNext() Moves to the next sibling of the current node. Returns
True on success or False if there are no more siblings or
if the current node is an attribute node.

MoveToNextAttribute() Moves to the next attribute node. Returns True on suc-
cess or False if there are no more attribute nodes or if
the current node is not an attribute node.

MoveToParent() Moves to the current node’s parent. Returns True on suc-
cess or False if the current node has no parent (is the
root node).

MoveToPrevious() Moves to the previous sibling node. Returns True on suc-
cess or False if there is no previous sibling or if the cur-
rent node is an attribute node.

MoveToRoot() Moves to the root node. This method is always successful
and has no return value.

Name Returns the name of the current node with namespace
prefix (if any).

Table 13.7 (cont.)

(continued)

The XmlDocument Class 315

Property/Method Description

NodeType Returns an XPathNodeType value identifying the type of
the current node. See Table 13.8 for possible values.

Select(match) Selects a node set that matches the specified XPath
expression and returns a type XPathNodeIterator. The
argument can be a string or a type XPathExpression.

Value Returns the text value of the current node—for example,
the value of an attribute node or the text in an element
node.

Table 13.7 (cont.)

Constant Description

All All node types

Attribute Attribute node

Comment Comment node

Element Element node

Namespace A namespace node (for example, xmlns="xxx")

ProcessingInstruction A processing instruction (not including the XML declara-
tion)

Root Root node

SignificantWhitespace A node that contains white space and has xml:space set
to “preserve”

Text A text node (the text content of an element or attribute)

Whitespace A node that contains only white space characters

Table 13.8 Members of the XPathNodeType Enumeration Returned by the
XPathNavigator Class’s NodeType Property

file presented later in the book in Listing 18.5. This file contains a database of
books and is structured as shown in this fragment:

<books>

<book category="reference">

<title>The Cambridge Biographical Encyclopedia</title>

<author>David Crystal</author>

<publisher>Cambridge University Press</publisher>

</book>

...

</books>

The objective of the demonstration is to let the user select a category of
books, and then display a list of all matching books. It is created as a Web
application. The user selects the category on an HTML page, as shown in
Listing 13.6. This page presents a list of categories from which the user
selected. The request is sent to the ASP.NET application in Listing 13.7.
The code in this page uses an XPathNavigator object to move through the
XML file. Specifically, the code locates each <book> element and checks its
“category” attribute. If the value of this attribute matches the category
requested by the user, the program walks through the <book> element’s chil-
dren (the title, author, and publisher elements), extracts their data, and out-
puts it in the form of an HTML table. The results of a search are shown in
Figure 13.3.

Listing 13.6 The HTML Page That Lets the User Select a Book Category

<html>

<head>

<title>Book search</title>

</head>

<body>

<h2>Find books by category.</h2>

<hr/>

<form method="GET" action="list1307.aspx">

<p>Select your category, then press Submit.</p>

<p>Category:

<select name="category" size="1">

<option value="biography">Biography</option>

<option value="fiction">Fiction</option>

316 Chapter 13 XML and the .NET Framework

<option value="reference">Reference</option>

<select>

</p>

<p><input type="submit" value="Submit"/>

</p><hr/>

</form>

</body>

</html>

Listing 13.7 ASP.NET Script That Uses the XPathNavigator Class to
Access XML Data

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Xml.XPath" %>

<script language="C#" runat="Server">

void Page_Load(object sender, EventArgs e) {

try {

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load(Server.MapPath("list1805.xml"));

XPathNavigator nav = xmlDoc.CreateNavigator();

//Get the query string submitted by the client.

NameValueCollection coll = Request.QueryString;

string category = coll.Get("category");

//Move to the document’s root element.

nav.MoveToRoot();

//Move to the first child.

nav.MoveToFirstChild();

while (nav.LocalName != "books")

nav.MoveToNext();

//At this point we are positioned at the root element.

//Move to the first child (the first <book> element).

nav.MoveToFirstChild();

//Start writing the HTML to the output.

Response.Write("<html><body>");

Response.Write("<h2>Books in the '" + category +

"' category:</h2><hr/>");

//Write out the table headings.

Response.Write(" <table cellpadding='4'>");

Response.Write("<thead><tr>");

Response.Write("<th>Title</th><th>Author</th>");

Response.Write("<th>Publisher</th></tr></thead>");

Response.Write("<tbody>");

The XmlDocument Class 317

bool more = true;

while (more)

{

//Is this book in the selected category?

if (nav.GetAttribute("category", "") == category)

{

//Move to the first child (<title>) and write its data.

nav.MoveToFirstChild();

Response.Write("<tr><td>" + nav.Value + "</td>");

//Move to next (<author>).

nav.MoveToNext();

Response.Write("<td>" + nav.Value + "</td>");

//Move to next (<publisher>).

nav.MoveToNext();

Response.Write("<td>" + nav.Value + "</td></tr>");

//Move back to the parent <book> node.

nav.MoveToParent();

}

//Move to the next <book> node, if any.

more = nav.MoveToNext();

}

//Finish the table.

Response.Write("</tbody></table><hr/></body></html>");

}

catch(Exception ex) {

Response.Write(ex.ToString());

}

}

</script>

Using the Select() Method and the XPathNodeIterator Class

The XPathNavigator class has the Select() method, which permits you to select
a node set that matches an XPath expression. The method returns an object
of type XPathNodeIterator that contains the matching nodes. If there are no
matching nodes, the XPathNodeIterator object’s Count property will be 0; oth-
erwise, this property returns the number of nodes. For example, this code
assumes that the variable selectExpr contains the XPath expression that you
want to use:

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load("InputFile.xml");

318 Chapter 13 XML and the .NET Framework

XPathNavigator nav = xmlDoc.CreateNavigator();

XPathNodeIterator xpi = nav.Select(selectExpr);

if (xpi.Count != 0)

{

// At least one matching node was found.

}

else

{

// No matching nodes were found.

}

The XmlDocument Class 319

Figure 13.3 The results of a book query displayed by Listing 13.7

Table 13.9 describes members of the XPathNodeIterator class. You will
note that the Current property returns a reference to an XPathNavigator object
that is positioned on the current node. However, you cannot use this XPathNav-
igator object to move away from the current node (unless you first clone it)—
you can use it only to get information about the current node.

To demonstrate using the Select() method and the XPathNodeIterator
class, I turn again to the XML file Inputfile.xml from Listing 13.4. The goal of
this application is to list the names of all the people in the XML database.
In other words, the application needs to go through the XML file, select all
<name> nodes, and display their values. This could be done using the “brute
force” method of going through all the nodes in the document, but the code is
a lot simpler if you use the Select() method. This is a console application that
opens the file and displays the names on the screen. Listing 13.8 presents the
source code.

When to Use XPathNodeIterator

There’s not much that really requires the use of the XPathNodeIterator
class, but it does make certain tasks more efficient. You can always locate
the node(s) that you want by using the XPathNavigator class’s methods to
move around the document tree and examine nodes as you go. However,
the ability to quickly select a subset of nodes based on an XPath expres-
sion can make this sort of brute force technique unnecessary.

320 Chapter 13 XML and the .NET Framework

Member Description

Count Returns the index of the last selected node or 0 if there
are no nodes.

Current Returns a type XPathNavigator positioned on the cur-
rent node.

CurrentPosition The 1-based index of the current node.

MoveNext() Moves to the next selected node. Returns True on suc-
cess or False if there are no more selected nodes.

Table 13.9 Members of the XPathNodeIterator Class

Listing 13.8: Using XPathNavigator and XPathNodeIterator to Access
XML Data

using System;

using System.IO;

using System.Xml;

using System.Xml.XPath;

namespace XPathNavDemo

{

class SearchXML

{

static void Main(string[] args)

{

SearchXML ex = new SearchXML();

}

public SearchXML()

{

try

{

XmlDocument xmlDoc = new XmlDocument();

xmlDoc.Load("InputFile.xml");

XPathNavigator nav = xmlDoc.CreateNavigator();

// Select all the <name> nodes.

string select = "descendant::person/name";

XPathNodeIterator xpi = nav.Select(select);

if (xpi.Count != 0)

{

// At least one <name> node was found.

// Move through them and display the values.

Console.WriteLine("The following people are in this file:");

while (xpi.MoveNext())

Console.WriteLine(xpi.Current.Value);

}

else

Console.WriteLine("No <name> elements found.");

}

catch (System.Exception ex)

{

Console.WriteLine("Exception: " + ex.Message);

}

finally

{

The XmlDocument Class 321

Console.ReadLine();

}

}

}

}

Summary

The .NET Framework provides a rich and comprehensive set of classes that
support almost every imaginable aspect of desktop and Internet-enabled com-
puting. Coupled with the Visual Studio .NET programming environment,
.NET represents Microsoft’s response to the new challenges facing developers
as the Internet assumes greater importance in all aspects of computing. .NET
includes excellent support for XML development, with several classes for
reading, writing, modifying, and navigating XML documents.

322 Chapter 13 XML and the .NET Framework

